Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury.
نویسندگان
چکیده
Glial activation and degeneration are important outcomes in the pathophysiology of acute brain and spinal cord injury (SCI). Our main goal was to investigate the pattern of glial activation and degeneration during secondary degeneration in both gray matter (GM) and white matter (WM) following SCI. Adult rats were deeply anesthetized and injected with 20 nmol of N-methyl-D-aspartate (NMDA) into the ventral horn of rat spinal cord (SC) on T7. Animals were perfused after survival times of 1, 3, and 7 days. Ten-micrometer sections were submitted to immunocytochemistry for activated macrophages/microglia, astrocytes, oligodendrocytes, and myelin. Astrocyte activation was more intense in the vacuolated white matter than in gray matter and was first noticed in this former region. Microglial activation was more intense in the gray matter and was clear by 24 h following NMDA injection. Both astrocytosis and microglial activation were more intense in the later survival times. Conspicuous WM vacuolation was present mainly at the 3-day survival time and decreased by 7 days after the primary damage. Quantitative analysis revealed an increase in the number of pyknotic bodies mainly at the 7-day survival time in both ventral and lateral white matter. These pyknotic bodies were frequently found inside white matter vacuoles like for degenerating oligodendrocytes. These results suggest a differential pattern of astrocytosis and microglia activation for white and gray matter following SCI. This phenomenon can be related to the different pathological outcomes for this two SC regions following acute injury.
منابع مشابه
Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury
Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...
متن کاملMicroglial Activation in Rat Experimental Spinal Cord Injury Model
Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900...
متن کاملModulation of Monocytic Activation following Spinal Cord Injury Reduces Secondary Injury and Neurodegeneration
The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. d d b b b y y y A A A u u u t t t h h h o o o r r r. .. We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. 2010 Spinal cord injury (SCI) sets of...
متن کاملOp-brai130345 1..17
Improving neurological outcome after spinal cord injury is a major clinical challenge because axons, once severed, do not regenerate but ‘dieback’ from the lesion site. Although microglia, the immunocompetent cells of the brain and spinal cord respond rapidly to spinal cord injury, their role in subsequent injury or repair remains unclear. To assess the role of microglia in spinal cord white ma...
متن کاملMechanisms of spinal cord injury regeneration in zebrafish: a systematic review
Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 190 2 شماره
صفحات -
تاریخ انتشار 2004